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Abstract-Delamination cracks originating from transverse cracking in two types of cross-ply
laminates [90/0], and [0/90], are analysed for three types of loadings: plane strain extension, plane
strain bending and antiplane shear. The asymptotic solution for stress and displacement field is
constructed based upon the Stroh formalism for anisotropic elasticity and the method of eigen­
function expansion, Its structure is determined from appropriate near-field conditions leading to
the eigenvalue equation, and then the singular hybrid finite element method in conjunction with a
quadratic programming procedure for treating the partial contact of crack faces is employed to
complete the field solution. The stress intensity factor properly defined for anisotropic interfacial
cracks and the energy release rate are computed from the complete solution. The stability of crack
growth and the effect of the relative ply thickness upon the crack growth stability are examined in
terms of the energy release rate and the phase angle.

1. INTRODUCTION

Fiber reinforced composite laminates, which have increasing applications in engineering
structures for many products of small or large scale, generally retain many initial flaws such
as voids and fiber breakage, and moreover geometric or material discontinuities such as
free edge, ply interface, cutout, or re-entry corner etc. The local stress field near such flaws
and discontinuities is severely perturbed, and this intense localized stress field gives rise to
initiation and growth of cracks or flaws, which gradually lead to a degradation of strength
and stiffness "before final failure. Thus the accurate stress analysis for such localized dis­
continuity or flaw zones in a composite laminate is very important in relation to the
understanding of its fundamental fracture or failure behavior, and has received significant
attention in the composite material community: among the well-known examples are free
edge problems, transverse crack problems and delamination crack problems.

After Pipes and Pagano (1970) first employed the finite difference method to study the
interlaminar stress in symmetric composite laminates under extension, the stress singu­
larities and stress distributions near the free edge in anisotropic composite laminates were
reported by Zwiers et al. (1982) and Wang and Choi (1982). In the same way as the
free edge problems, Wang (1984) and Wang and Choi (1983) treated the problems of
delamination cracks in anisotropic composite laminates. The stress singularities near the
transverse cracks in anisotropic composite laminates were first reported by Ting and
Hoang (1984) although the solutions to the similar problems in isotropic bi-materials were
somewhat earlier reported by Bogy (1971). 1m (1989) calculated the stress singularities and
computed the asymptotic stress fields near such transverse cracks in cross-ply laminates.
Recently, it was reported that as the load increases, transverse cracks occurring in the 90°
ply ofcross-ply laminates terminating at the interface tend to kink into delamination cracks
along the ply interface (Lim, 1988). Kim et al. (1991) treated such delamination cracks
in cross-ply laminates under plane strain extension by use of the boundary collocation
technique.

The purpose of the present work is to examine the fracture behavior of the cross­
ply laminates containing delamination cracks originating from transverse cracking under
various loadings, with the aid of singular hybrid finite element method combined with the
asymptotic solution near the crack tip. In terms of the energy release rate and the phase
angle, the stability of crack growth and the effect of geometric parameters such as crack
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length and relative ply thickness are examined under three types of loadings: plane strain
extension, bending and antiplane shear.

In Section 2, the problem under consideration is stated, and then based upon the Stroh
formalism for anisotropic elasticity, the general solutions for stress and displacement fields
in cross-ply laminates are obtained. The asymptotic solutions obtained from the eigen­
function expansion are presented in Section 3. The appropriate near-field conditions are
imposed to lead to the eigenvalue equations, which determine the structures of the asymp­
totic solutions, including the stress singularities. In Section 4, the asymptotic solutions,
determined within the unknown constants, are then incorporated into the singular hybrid
crack-tip finite elements, which are combined with the regular finite elements to complete
the solution. Solution procedure for treating the contact problems is taken to consider
possible partial closure of crack faces. It turns out that the crack faces in [0/90]s under plane
strain extension are slightly opened near the crack tip although the remaining greater part
of the faces are closed, as opposed to the contention of Kim et al. (1991) that the crack
faces for [0/90]s are fully closed under the plane strain extension. In Section 5, the numerical
results obtained from the singular hybrid FEM are shown in terms of the stress intensity
factor clearly defined by Suo (1990). The crack growth stability versus the crack length is
discussed in terms ofthe energy release rate and the phase angle for each of the plane strain
extension, the plane strain bending and the antiplane shear, and the effect of thickness upon
the energy release rate trend is discussed.

2. STATEMENT OF THE PROBLEM AND BASIC EQUAnONS

Consider two types of cross-ply composite laminates, [90/0]s and [0/90]s under plane
strain extension or bending, or antiplane shear deformation. As the load increases, there
will occur numerous transverse cracks running parallel to the fiber orientation of the 90°
ply, with an approximately uniform spacing along the length of the laminates. These cracks,
extending perpendicularly to the ply interface and terminating right there because of the
stronger 0° ply, tend to develop into delamination cracks along the interface as the load
increases further (Kim et al., 1991). To simplify the problem, we assume that the cracks
are uniformly arranged, so that the overall arrangement is obtained by repetition of the
representative unit cell (see Fig. 1).

unit cell
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Fig. 1. Delamination cracks originating from transverse cracking in [90/0], and [0/90],.
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A rectangular Cartesian coordinate system is taken with its origin at a crack tip; the
XI axis is along the crack ligament while the X2 axis is taken to be perpendicular to the
interface, and then the X3 axis lies along the direction which is parallel to the cracks (see
Fig. 1). Then each ply of the laminates lies in a plane parallel to the XI-X3 plane, and the
ply orientation 8 is given by the counterclockwise angle, viewed from the top, that the fiber
direction makes with the Xl axis. The laminates have sufficiently large dimension in the X3

direction, compared with the dimension in the X2 direction; the laminates are then assumed
to be in the state of plane strain deformation under extension or bending, wherein the
displacement in the X3 axis disappears identically, and to be in the state of antiplane
deformation under shear, where the displacements in the X I and X2 axes are identically zero.
Moreover, the deformation field is a function of only the two coordinates XI and X2'

In a fixed rectangular Cartesian coordinate, let Ui , (Tij' Sil" Cjk/ be the displacement, stress,
strain and fourth-order stiffness components, respectively. Then we have the governing
equations of equilibrium, strain-displacement relations and stress-strain relations:

(Til',l' = 0, (la)

(1 b)

(Ic)

where summation is implied on the repeated indices, and a comma indicates partial differ­
entiation with respect to X~ (a = 1,2). Hereafter the lower case Roman indices are used to
indicate 1,2 or 3 unless stated otherwise, while the Greek letters indicate 1 or 2.

For the aforementioned types of deformations, we can assume (Ting, 1986) that

(2)

where p and VI: are, respectively, the eigenvalue and eigenvector to be determined, and His
a function of z. Substitution of eqn (2) into eqn (la, b, c) yields

3

(Til' = :L (Ciik1 +pCil'k2 )Vk dH(z)/dz,
k= I

3

:L {Cilkl +P(Cilk2 +Ci2kl)+p2Ci2k2}Vk = O.
k= I

For the existence of nontrivial solutions Vb we have

(3)

(4)

(5)

This results in the sextic equation for the eigenvalue p and then the eigenvector VI: is obtained
from eqn (4). Because of material symmetry of the orthotropic materials such as [90/0]_
and [0/90]_ laminates (Kim et al., 1991), eqn (5) is decomposed into two, a quadratic and
a quartic equation in p. Let e~ (Cl = 1,2) denote a root of the quadratic equation and Iti
(i 1,2,3,4) a root of the quartic equation. The eigenvalues e~ are associated with the
antiplane shear deformation, which involves only the displacement U3' and Iti are related to
plane strain deformation involving the displacement Ul and U2' Then the eland e2 become
complex conjugate to each other. Similarly, we can confirm that the It; (i = 1,2,3,4)
constitute two complex conjugate pairs [refer to Kim et al. (1991) and references cited
therein]. Two deformation modes, the antiplane shear deformation and the plane strain
deformation, are decoupled from each other. The associated eigenvectors Vk for each of the
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eigenvalues ~a and J.li will be denoted by Vka and Vki' General solutions for two types of
deformations are written, respectively, as [see Kim et al. (1991) for details] :

antiplane shear deformation:

Sa = Xl +~aX2'
2

U3 = L V3aF (Sa),
a~ I

plane strain deformation:

Zk =Xl+J.lkX2 (k= 1,2,3,4),
4

Ua = L VakG(Zk),
k~l

(6a)

(6b)

(7a)

(7b)

Here F and G are functions of Sa and Zb respectively. It is noted that the foregoing
development holds for each ply, and we will use the superscript (I), (2) to denote the upper
and lower ply, respectively. Since the case of plane strain extension was treated by Kim et
al. (1991), our attention is primary given to the case of plane strain bending and antiplane
shear, and just some corrective remarks on the previous results (Kim et al., 1991) are to be
made for the plane strain extension.

3. ASYMPTOTIC SOLUTIONS FOR STRESS AND DISPLACEMENT NEAR THE CRACK TIP

Historically, an eigenfunction denoting the asymptotic field solution near the crack tip
has been used in a form of the power series, as assumed by Williams (1959). Dempsey and
Sinclair (1979) showed that in a certain problem of composite wedges fails the application
of power-type eigenfunctions, and then they introduced the logarithmic eigenfunction. Ting
and Chou (1981) extended this view to the problem of anisotropic composite laminates.
For the present problem, however, the power-type eigenfunction (Wang and Choi, 1982;
Ting and Hoang, 1984; Ting, 1986) successfully represents the asymptotic solution, that is,
the set of eigenvectors sufficient to span its solution exists.

To determine the structure of the asymptotic solution including the stress singularities,
we need to consider the near-field conditions that the solution is required to meet near the
crack tip. We assume that all crack faces are frictionless, and along the crack ligament the
two plies are bonded perfectly to each other. Then for antiplane shear the conditions on
the crack faces and on the ligament are summarized as [for plane strain deformation, refer
to Kim et at. (1991)]

aW(Xl'O+) = aW(xl'O-) = 0 on the crack faces (XI ~ 0), (8a)

[a23(x,,0)] = [U3(X" 0)] = 0 on the ply interfaces (XI ~ 0), (8b)

where the superscript (I) or (2) indicates the upper or the lower ply, respectively, and the
bracket [ ] denote discontinuity of the quantity in it across the ply interface. Note that we
do not know a priori whether the crack faces are opened or closed for the plane strain
deformation. It depends upon the geometry as well as the loading, and therefore we need
to obtain the complete solution for this. The problem becomes nonlinear when the contacts
ofcrack faces are involved. To deal with such a contact problem, we will introduce a special
technique in the solution procedure later. For the time being, we proceed to obtain the
asymptotic solution, implicitly assuming that either opening or closure has been chosen.
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For antiplane shear deformation first, we assume the power type eigenfunction as given
by Ting (1986)

00

F(s.) = L A••~·+ 1/(b. + I),.= 1

Rewriting eqn (6a, b) to denote the displacement and stress field for this deformation, we
have

00 2

u~m) = L L Ai~)v~,:)Sim)b.+ 1/(b. + 1).= 1 .= 1

00 2
arm) = " "A(m) (c(m) + ):(m) c(m) )v(m)s(m)b.

3p ~ ~ •• 3p 3 I ... 3p 32 3. •
n= 1 a:= 1

(m = 1,2),

(m = 1,2),

(9a)

(9b)

where the superscript m = I, 2 indicates one of the two different plies, respectively. Because
these solutions are required to satisfy the near-field conditions, substitution of eqn (9a, b)
into eqn (8a, b) yields the 4 x 4 homogeneous linear algebraic equations

4

L Aij(b.)Dj • = 0 (i, j = 1,2,3,4),
j= 1

(10)

where "(1)", "(2)" denote the upper and lower ply, respectively. For the existence of
nontrivial solutions Dj ., we have

(11)

which determines the eigenvalue b•. From the structure of Aij, we can show that if b. is the
root of the characteristic equation (11), so is its complex conjugate 5., so that the expressions
for the stress and displacement may become real. Thus, when Ai~) and Ai';;) indicate the
corresponding eigenvectors for b. and 5., respectively, they have the following conjugate
relation as

A\r;;) = A~), A~r;;) = A\~) if b. is complex,

A~r;;) = A\r;;) if b. is real. (12a)

For convenience, we take

Ai~) = HYI. -iY2.)ai~) for complex b., 1m [b.] > 0,

Ai~) = h3.a~) for real bn (no sum on n). (12b)

Here a~) is the solution of the eigenvector Ai~), depending upon the associated eigenvalue
b., and within an arbitrary constant it can be computed from eqn (10) when properly
normalized. Now Yin (i = 1,2,3) are real constants to be determined to complete the
asymptotic solution. We can then rewrite the asymptotic stress and displacement solution,
eqn (9a, b), as

00

u~m) = L Q~3)'.= 1

00

a~':) = L P~3~'
n= 1

(13a, b)

where Q~3) and P~3~ are given in Appendix A.
For plane strain deformation, we take the power type eigenfunction as
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00

G(Zk) = L Bknz%n+ l/(bn+ 1),
n~ I

Then following the same procedure as in the antiplane shear deformation and referring to
Kim et al. (1991), we obtain the asymptotic solution of displacement and stress field as

00

u(m) = '" Q (m)
G( ~ ncx.'

n=l

00

CI(m) = '" p(m)
of! L, nof!'

n= I

(14a, b)

where Q~':) and P~':fr are described in Appendix A.
The unknown real constants Yin (i = 1,2,3) should be obtained through the numerical

solution procedure such as the boundary collocation method (Wang and Choi, 1982), the
singular hybrid finite element method (Wang, and Yuan, 1983), or the enriched finite
element method (Atluri and Nakagaki, 1986; Stolarski and Chiang, 1989). We here use the
singular hybrid finite element method, devising a singular hybrid element into which the
asymptotic solution near the crack tip is embedded. This approach can be combined with
Lemke's algorithm (Lemke, 1968) to treat the complementary problem resulting from the
contact problem, and it is therefore appropriate particularly for plane strain bending or
extension where the crack faces may be in partial contact with each other; moreover the
hybrid finite element approach is valid for a wide range of crack sizes compared with the
boundary collocation method, which turns out to encounter a difficulty when the crack size
is very small compared with the ligament length (see Section 5 for details). The asymptotic
solution truncated is written as

N

Clij = L fJnfij(x 1> x 2, bn),
n=l

N

Uj = L fJng7(XJ, X2,bn),
n~1

(l5a)

(l5b)

where fJn denote the unknown constants Yin for each deformation, say, fJI = Ylb fJ2 = Y2b
fJ3 = Y3b'" etc., when b l is complex and b2 is real, and N is the total number of the
eigenvalues truncated, which may be different for each deformation.

4. NUMERICAL SOLUTION PROCEDURE

To obtain the complete solution over the entire domain, we rely upon a special finite
element method, where a singular hybrid element, used to model the crack tip, is incor­
porated with eight node iso-parametric regular elements of its surrounding. The asymptotic
solution truncated properly is embedded into the singular hybrid element so that the near­
tip field is matched with the far-field solution represented by the surrounding regular
elements. Kim et al. (1991) treated the case of the plane strain extension by use of the
boundary collocation method, assuming that the crack faces are either fully opened or fully
closed, which must be confirmed after the complete solution. However in case there occurs
partial contact or opening of the crack faces, the boundary collocation method is not
straightforwardly applicable, but requires some iteration procedure implemented for dealing
with the contact boundary. On the other hand, the present finite element scheme may be
easily combined with Lemke's algorithm (Lemke, 1968) to treat the contact problem
efficiently. Moreover, the finite element method has an advantage over the boundary
collocation method in that the former yields uniformly accurate solution regardless of the
size of the delamination crack relative to the length of the crack ligament. As will be
discussed in the next section, the boundary collocation method encounters a difficulty of
very large boundary residuals for very short crack size; from this the eigenfunction series
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is seen to fail to represent the far-field solution when the crack length is very small compared
with the laminates dimension.

4.1. Formulation of the singular hybrid element
To illustrate the basic scheme of stiffness matrix formulation for the singular elements,

we follow the line adopted by Wang and Yuan (1983). We first consider each singular
region around a crack tip covered with a single hybrid element into which the asymptotic
representation is incorporated. The asymptotic solution in the near-tip field of the hybrid
element is matched with the far-field solution represented by the regular finite elements
surrounding the hybrid element. It is then needed, in addition to the asymptotic solution,
that the displacement ii along the boundary between the singular element and the regular
elements is assumed independently. The stiffness matrix of singular element is formulated
on the basis of the hybrid variational functional IImh(O', u,ii) in Washizu (1988), which can
be derived from the Reissner-Hellinger variational functional with a relaxed continuity
condition along the interelement boundary with the aid of Lagrangian multiplier technique.
For the present problem, the asymptotic solution (15a, b) for stress and displacement, which
will be embedded into the singular hybrid element, satisfies all governing equations except
for the interelement compatibility with the surrounding regular elements, so that the func­
tional lImh can be written as [see Wang and Yuan (1983) for details]

(16)

where Am is the area of the mth singular hybrid element; oAm is the boundary of Am, and
T is the traction.

Equation (l5a, b) may be written in the matrix forms

0' = pp, U = Up,

and the matrix notation for T can be found from the expression (17a) :

T = Rp.

(17a,b)

(18)

For the displacement along the boundary of a hybrid element, we introduce the standard
quadratic interpolation function, L, to ensure proper matching with boundary displacement
of the adjacent eight node iso-parametric nonsingular elements as follows:

ii = Lq, (19)

where q is the nodal degree of freedom common to the hybrid element and the surrounding
regular elements. Now the functional lImh can be written as

(20)

where

The stationary property of the first variation of IImh leads to

(21)

Substitution of eqn (21) into (20) yields
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TImh = -fqTksq, ks = GTH-'G, (22a, b)

where ks is the element stiffness resulting from the nth singular hybrid element.

4.2. Formulation of the regular element
For the remaining region surrounding the hybrid element, we use the regular elements

based upon the displacement finite element method. In the absence of body force and
tractions, the total potential energy TImp to be minimized in the problem is given by

11 TTImp = 2" Il CIl dA,
Am

(23)

where C is the 6 x 6 stiffness matrix. We now take the standard iso-parametric representation
for the displacement components

u = Nq, Il = Bq, (24)

where q is the nodal displacement, and Nand B are the shape function and the strain
matrix, respectively. Substituting this equation into eqn (23), we obtain TImp in terms of the
element stiffness k,

TImp = ~qTk,q, k, = r BTCB dA,
JAm

where the subscript "r" indicates the regular elements.

(25a, b)

4.3. Solution procedure
The summation of the two types of element stiffness (22b) and (25b) all over the

elements will yield the global stiffness K, and the global load vector Q may be assembled
similarly. Symbolically we may express this assemblage process as

K = Lk s +Lk" Q = L: Qs +LQ"
L M L M

(26)

where Land M indicate the singular element number and regular element number, respec­
tively. The discretized equilibrium equations may be written in the matrix form:

Kq=Q. (27)

Imposing the displacement boundary conditions among the far field conditions, we can
solve eqn (27) for the unknown nodal displacements and the reaction force. However as
discussed earlier, the crack faces may be in partial contact with each other depending upon
the geometry and loading, and the contact area is not known a priori in this case. To treat
such a contact problem, which is inherently nonlinear in its nature, we should re-examine
finite element analysis as the following quadratic problem:

Minimize -fqTKq-QTq,

subject to Aq ~ O. (28)

Here at a contact point ofcrack faces the impenetrability condition is given by the inequality
constraint Aq ~ 0 where the Aq represents a difference of a nodal displacement at pre­
sumable contact points and the column vector 0 is a zero vector. Thus the matrix A is m x n­
dimensional where m is the number of contact pairs and n is the number of degrees of
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freedom. Associated with the above problem is another problem, referred to as the Lagrang­
ian dual problem being to maximize O(l) over l ~ 0, where

O(l) = min OqTKq-QTq+lTAq}.
q

(29)

Note that for a given l, the function O(l) is strictly convex and achieves its minimum at a
point satisfying

(30)

When an appropriate boundary condition is imposed, K is reduced to a positive definite
matrix K, so that K- I exists, and then the unique solution to eqn (30) is given by

(31)

where the superscript "~,, indicates the only active degrees offreedom. From eqns (29) and
(31), it follows that

where D( = AK - I AT) has its dimensions of m x m and F( = - AK - I Q) of m x I. Rewriting
the dual problem as

Minimize O(l) = ~lTDl+FTl,

subject to l ~ 0,

we obtain the standard quadratic problem. Then using Lemke's algorithm (Lemke, 1968),
wherein the converged solution is attained through a finite number of iterations, we can
solve the above standard quadratic problem efficiently. Once l is obtained through this
algorithm, then the nodal displacements q are determined from eqn (31) and the free
constant fJ is the asymptotic representation can be from eqn (21), which will complete the
solution.

It is noted that displacement solution is for the composite domain consisting of the
singular hybrid element and the displacement based regular elements. The theoretical basis
for using two such different variational principles has been treated in Gurtin (1980).

5. NUMERICAL RESULTS AND DISCUSSION

In this section, using the field solution, obtained from the foregoing development, we
compute the fracture mechanics parameters such as stress intensity factor and energy release
rate. On the basis of this result, we then discuss the fracture behavior of the delamination
cracks.

The following material data (graphite epoxy T300/5208) are used for numerical com­
putation:

EL = 134 GPa, ET = Ez = 10.2 GPa,

GLT = GLZ = 5.52 GPa, GTZ = 3.43 GPa,

VTZ = 0.49,

where the subscripts L, T and Z indicate the longitudinal, transverse and thickness direction,
respectively.

In constructing the singular hybrid finite element it is sufficient to consider only the
upper right part of the unit cell for the plane strain extension and the antiplane shear
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Fig. 2. Mesh configurations for singular hybrid finite element method.

because of symmetry in loading and geometry; on the other hand only the right half of the
unit cell is considered for the case of plane strain bending (see Fig. 2).

The nominal strains of plane strain extension and antiplane shear are respectively
defined as eo = uo/b and Yo = wo/b where Uo and Wo are displacements imposed at Xl = b-c
when X I = - c is fixed (b is a half of the unit cell width and c is a half of the crack length).
The linearly distributed nominal strain with the maximum absolute value lema. I = IUmaxl/b
for the plane strain bending is imposed at XI = b-c when XI = -c is fixed. For the plane
strain bending, there is no geometrical symmetry of cross-section about the mid-plane in
case the crack faces contact each other, and therefore the neutral plane will not coincide
with the mid-plane. To obtain a pure bending, we employ the Newton method through
numerical differentiation of the equation resulting from the conditions of the net zero axial
force.

The eigenvalues of each deformation obtained from the characteristic equations (see
Section 3) are given as

n-! ± it'f and n for the opened cracks under plane strain deformation,

n-! and n for the closed cracks under plane strain deformation,

n-! and n for the cracks under antiplane shear deformation,

(n = 0, 1,2,3, .,. and t'f = 0.0329 ...).

One of the two eigensolutions either for open or closed cracks needs to be chosen in the
case of the plane strain deformation for constructing the hybrid crack tip element. In
general, however, we do not know a priori whether the crack tip is open or closed. Then
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we first perform the regular finite element analysis to find out the crack-tip behavior, and
based upon this regular FEM result we choose one of the two asymptotic solutions. For
all cases of loading we consider here, the crack tip is found to be opened, and the stress
singularity is oscillatory for the plane strain problems.

The stress intensity factor is a fracture parameter characterizing the near-tip stress
field. However, for interface cracks in anisotropic solids there has been an ambiguity in the
definition of the stress intensity factors related to normalization of the eigenvector, and
such vagueness was clarified by Suo (1990), who showed that due to anisotropy the form
of complex stress intensity factor does not come to the same form as the complex stress
intensity factor defined in interfacial cracks of isotropic bi-material, but it depends upon
the way the eigenvector is normalized. Thus the definite descriptions of stress intensity
factor must precede in order to use it as a fracture parameter in anisotropic composite
laminates. Following Suo (1990), we define the stress intensity factor K for the plane strain
deformation modes as (see Appendix B for detail)

(
H )1/2 Kri~
H

22
un(r,0)+ iu t2(r,0) = r->='

II v' 2nr

as r approaches zero ahead of the crack tip, where H tl and H n are given by eqn (B7) in
Appendix B. The mode III of antiplane deformation is decoupled from plane strain defor­
mation in orthotropic materials such as cross-ply laminates, and the stress singularity for
such antiplane deformation is not oscillatory as discussed above, and the stress intensity
factor is well defined as the classical mode III intensity factor:

as r --+ o.

As pointed out by Suo (1990), three real scalars (one complex stress intensity factor K and
one real stress intensity factor Kill) characterize the near-tip field of an interfacial crack.
However, the complex intensity factor K has the length scale dependency, and we therefore
use the following stress intensity factor based upon the traction on a specific reference
length f (Rice, 1988)

where f is chosen to be fib = 0.005 (or fico = 0.02, co: initial crack length).
To confirm the singular hybrid finite element solution, in Table I we check the solution

convergence versus the number of eigenvalues in terms of the stress intensity factor based
upon the above definition. We also compare the present solution with the results reported
by Kim et al. (1991), who employed the boundary collocation method to treat the plane
strain extension. The solutions from these two different methods show an excellent agree­
ment for not too small crack lengths for the [90/0]. laminates (see the case of [90/0], in Fig.
3). As the crack length becomes short compared with the ligament length of the crack,
however, the boundary collocation method fails to yield an accurate solution. This fact is
numerically confirmed by non-negligible boundary residuals along the remote boundary
conditions in the resulting solution regardless of the number of eigenvalues retained (see
Table 2). Moreover, as opposed to the result from Kim et al. (1991), the crack faces of the
[0/90], laminates under plane strain extension are not fully closed; the greater part of the
crack faces are found to be closed, but a small region near the crack tip is to be opened.

Figure 3 shows the energy release rate versus the crack length for the plane strain
extension (see Appendix B for calculation of energy release rate). The results from Kim et
al. (1991), which was obtained from the boundary collocation method (BCM) are also
shown for comparison. For the [90/0]. laminates, the results from the BCM are in good
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Table I. Solution convergence versus the number of eigenvalues in terms of the stress intensity factors

Plane strain extension Plane strain bending (tension side) Antiplane shear

[90/0],
(53 elements)

[0/90],
(203 elements)

[90/0],
(212 elements)

[0/90],
(212 elements)

:<

~
8-
sn
~

Kill/YO

2.6648
2.6640
2.6643
2.6640

[90/0], and [0/90],
(53 elements)

K2/IEmax l
-1.l270
-1.l262
-1.l176
-1.l176

K'/IEma.1
0.1254
0.1346
0.1181
0.1205

K 2/IBma.1
1.9898
1.9581
1.9507
1.9527

K,/IEma.1
2.9008
2.8854
2.8658
2.8668

K 2/BO

-4.6206
-4.6309
-4.6144
-4.6154

K,/BO

0.0615
0.0902
0.1l72
0.1l30

K:JBO

3.1980
3.1917
3.1824
3.1862

K,fBo

3.3128
3.3036
3.2594
3.2639

7
II
15
19

No. of
eigenvalues

EO = Yo 1, IBmaxl = 1/2, h90/ho = 1, h90/b = 1/4, c/b = 1/4.
Unit: GPa m- I

/ 2•
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Fig. 3. Energy release rate vs the length of delamination crack under a fixed loading condition in
plane strain extension [BCM indicates the results from the boundary collocation method, reported

by Kim el al. (1991)1.

agreement with the present results from the singular hybrid FEM for cracks of not too
small crack length. When the crack length becomes smaller, as discussed earlier, the asymp­
totic solution fails to represent the far-field solution and the remote boundary residuals
become significantly large in HeM. This explains the discrepancy for small crack length.
For the [0/90], laminates, there exists a significant discrepancy between the two solutions.
This is due to the fact that a small open region near the crack tip was neglected and that
the entire crack faces were assumed to be fully closed for the [0/90]. in Kim et al. (1991).
Figures 4 and 5 show the results for the antiplane shear and the plane strain bending.

It is worthwhile to note that the energy release rate tends to infinity for vanishing crack
length under antiplane shear while the limiting values of the energy release rate for the
vanishing crack length tend to zero under plane strain extension and bending. These
phenomena can be predicted from the following: the 900 ply laminate is stiffer than the 00 ply
laminate under the present antiplane shear loading, and transverse cracks perpendicularly
terminating at the interface have singularity stronger than the inverse square root under
this loading; under plane strain extension or bending, on the other hand, the 90 0 ply

Table 2. Maximum boundary residuals versus crack lengths in boundary collocation method

IMax. mismatchI along
Crack length No. of eigenvalues homogeneous boundary

(c/b) (120 collocations) Kdeo K2/e O when the boundary data are 0(1)

83 3.1993 3.1230 0.0214
0.25 63 3.1951 3.1239 0.0376

43 2.8666 2.9416 0.0970

83 3.2667 3.1331 0.0945
0.20 63 3.2646 3.1176 0.1101

43 2.9934 2.8989 0.1811

83 3.0250 2.8094 0.1775
0.15 63 3.0594 2.8013 0.1744

43 2.9439 2.7339 0.1689

83 2.2900 2.3907 0.3866
0.10 63 2.3977 1.2762 0.3533

43 1.9535 J.l649 0.3809

83 1.8823 -0.2283 0.4770
0.05 63 1.9018 -0.2008 0.4730

43 1.4559 -0.2098 0.5141

[90/01, plane strain extension.
Unit: GPa m- I/ 2•

eo = I, h90 /h o = I, h90 /b = 1/4.
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Fig. 4. Energy release rate vs the length of delamination crack under a fixed loading condition in
antiplane shear.

laminate is softer than the 0° ply laminate and the transverse cracks have singularities
weaker than the inverse square root (1m and Kim, 1989). Thus, the energy release rate for
a vanishing delamination crack in each case tends to infinity and zero, respectively. Figures
3-5 also clearly show the effects of ply thickness ratio. That is, as the 90° ply thickness
increases compared with the 0° ply thickness, the energy release rate shows a very sharp
increase, which reveals the more unstable crack growth behavior. This is consistent with
the observation that the energy release rate will ultimately remain constant regardless of
the crack length, just as in the case of thin films, when the thickness of the 90° ply becomes
smaller and smaller.

As is seen from Fig. 5, the energy release rate for the crack on the compression side
under the plane strain bending is negligibly small compared with the energy release rate on
the tension side. This means that only the delamination crack on the tension side will grow
as the load increases. The energy release rate for the plane strain bending with cracks only
on the tension side is denoted in Fig. 6 by the darkened mark, which does not show a
significant difference from the case of cracks on both of the tension and compression sides.

0.004

-~.. 14ll8101>...... -e- hllolbo = 3/1-- -- hllolbo - 1/1
0.003 -- -;;;- hllolbo= 1/3

'i <hoo+hollb = 1/2
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~ 0.002
~..
=-ti-

0.001

0
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__ beoIbo = 1/1
-;;;- beoIbo = 1/3

Choo+bol/b = 1/2

compreaioll tanCDn

0.4

[90/0]"

Fig. 5. Energy release rate vs the length of delamination crack under a fixed loading condition in
plane strain bending.
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c/b
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Fig. 6. Comparison of two crack configurations: One is for the case with cracks only on the tension
side and the other is for the case with cracks on both the tension and compression sides.

For brittle orthotropic materials under plane strain deformation, the complex stress
intensity factor K fully characterizes the near-tip stress field for an interfacial delamination
crack, and the crack will grow when this complex scalar K or a set of two real stress intensity
factors K 1 and K2 in Kfi~ = K 1+iK2 reaches some critical values. A combination of two
real numbers K( and K 2 for which the crack growth begins will form a failure curve in the
K(-K2 surface. In terms of the energy release rate, the energy release rate itself is not enough
to characterize the crack tip stress field, but the phase angle is needed for another variable

Now the two real parameters G and 'P can replace the two scalars K j and K 2 , and the crack
growth criterion may be stated as

where Gc is the critical energy release rate, which is a material constant depending upon the

90

[0/90]. -------
60

~

[90/0]. /

(degree)
30

-&- heoIho = 3/1
--4r- heoIho = 1/1
-e-- heoIho "" 1/3

<beo+hoJib = 1/2
o+--.----.-.,....---r--,.-,....--r--,-----,r--!

o 0.2 0.4 0.6 0.8

c/b
Fig. 7. Phase angle vs the length of delamination crack in plane strain extension.

en "hlA..A
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0 0.2 0.4 0.6 0.8

c/b

Fig. 8. phase angle vs the length of delamination crack in plane strain bending.

phase angle. Figures 7 and 8 show the phase angle defined at fib = 0.005 depending upon
the crack length and the ply thickness ratios for plane strain deformation. It is noticed that
the phase angle is close to nl2 for [0/90], regardless of the crack length under plane strain
extension, so that mode II is dominant over mode 1. In [9010], laminates the phase angle
remains relatively uniform for the crack length of clb = °~ 0.5 for both plane strain
extension and bending (Figs 7 and 8), while for [0/90], laminates the phase angle is almost
constant for plane strain extension (Fig. 7), and it gradually decreases for plane strain
bending (Fig. 8). In general, the resistance to crack growth is an increasing function of 'P
(Ge for mode II is greater than Ge for mode I). Since 'P is uniform or gradually decreases
for clb = 0 ~ 0.5, and the crack length corresponding to the maximum G is within this
range in Figs 3 and 5, there will exist an inherently built-in crack arrest mechanism: Any
delamination crack will undergo unstable growth until the crack length reaches a critical
value associated with the maximum G, and it will continue to grow under a fixed loading
until the energy release rate decreases to the critical value Ge('P). For the antiplane shear,
the crack growth criterion is given by G = Ge, where the critical energy release rate Ge for
mode III is a material constant. As is seen in Fig. 4, the energy release rate G versus the
crack length curve for the antiplane shear is relatively flat except for large values of G for
vanishing crack length.
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APPENDIX A

For antiplane shear, we have the following expression for Q~';) and P~';~ ofeqn (13a, b),

ro

U)m) = L Q~';),
11= 1

ro

u!C) = L P~';~,
n= t

(Ala, b)

Q~';) = 1'1. Re ["'~';)I +1'2n 1m ["'~';)],

P~';~ = 1'1. Re [t/>~';~I +)Iln 1m [t/>~';~I,

"'~';) = (a)';:)v)jlsjml".+ I +a~lv)j)S)m)".+ 1)/(".+ I),

t/>~';~ = a(t::l(C)';;~1 Hjm)q';;~2)V\j)Sjm)"'+a~)(C)';;~1 +~mlC)';;~2)V~j'Mm)".

for complex "., 1m [".1 > 0, or

Q~3) = 1'3. Re [aj,::)v\'1)sjm)".+ 1/(". + 1)1,

P~3~ = 1'3. Re [a\'::)(C)'=~1 H\m)C\';;~2)V)'1)s)m)"'1

for real "•.

For plane strain deformation, Q~':) and P~':~ ofeqn (14a, b) are given as

'" '"
u~m) = L Q~':), (J~'jP = L P!:/J,

n=1 n= 1

Q~':) = 1'1. Re ("'~':)I +1'2. 1m "'!:»),
P~':~ = 1'1. Re [t/>~':Jl +1'2n 1m [t/>~':JI,

2

1/1!:) = L {(bl:::)v~)zlm)".+I+blk12).~)Z1m)".+I)/(".+I)},
k_1

2 2

t/>~':J = L L M::)(C~p;1 +lllm)C~p;2)v~k)zlml'"
k= 11'= 1

+blkh,(C~p;1 +plm)C~p;2)v;klZ1m)",}

(A2a, b)

for complex ".. 1m [".1 > 0, or

Q~':) = 1'3. ReLt b1'::)v~)zlm)",+ 1/(". + 1)J
p(m) = l' Re[~ ~ b(m) (c(m) + ,,(m)c(m) )v(m)..(ml",]

nrxfJ 311 t.... i..J kll rx(Jy I ric (l,fJy2 '1k £Ic
k= 1 y= t

for real ".,

where the normalized eigenvectors a~) are given in eqn (12b), and b1'::) are given in a similar fashion.
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APPENDIX B

In this Appendix, based upon the asymptotic representation at the near-tip field Suo's stress intensity factor
(Suo, 1990) and the energy release rate for interfacial cracks are derived in orthotropic materials.

We take the first term of the asymptotic solution rJ2, (IX = 1,2) along the ply interface (x,;' 0), described in
Appendix A, and rewrite it as

rJ2dol~-1/2+;, = Y\I Re[2w ,r;')r- 1/2 +Y21 1m [2w,r;')r- I
/
2

= 2(2nr)-1/2 Re [~(Yll-iY21)r;'wl),

rJ221ol~ -112+;, = YII Re [2w 2r;')r- 1/2 +Y21 1m [2w 2r;']r- I/2

= 2(2nr)-1/2 Re [~(Y'I-iY21)r;'w2)'

where the eigenvectors W, and W 2 are

2 2

2W I = :r L {bkl(C2Iyl +llkC21,2)Vyk+b(k+2)I(C2Iyl +JlkC21,2)Vyk},
k= 1 '1= 1

2 2

2w2 = L L {bkl (C 221 I +llkC22y2)V,k+b(k+2)I(C2211 +JlkC2212)V,d·
k= 1 }'= I

Setting K = ~(Yll-iY21)' eqn (Bla, b) can be written as

rJ21(r,0) = 2(2nr)-1/2Re[Kr;'w,),

rJn(r,O) = 2(2nr)-1/2 Re [Kr;'w2).

(Bla)

(BIb)

(B2a)

(B2b)

(B3a)

(B3b)

The stress intensity factor K becomes different in accordance with the method of normalizing the eigenvectors bk I
(k = 1,2,3,4) or the resulting eigenvectors w, (IX = 1,2).

To obtain the relation between bkl and w, we introduce the matrix L,p as

2

L~;) = L (C~2;1 +1l1m)C~2;2)V~;) (m = 1,2),
t'''''!

and apply the traction free and continuity condition at the near-tip field to the asymptotic solution

(B4)

To determine the eigenvectors WI and W2we apply the displacement continuity along the ply interface for the
first term of asymptotic displacement solution u, (IX = 1,2) described in Appendix A

2 2

L (v~b)bW+~b)b~J~2)1) = L (v~~)b1~)+~~)b~i~2)1)'
p~ I p~ I

and substitute eqn (B4) into eqn (B5)

2 2 2 2

e"' L L (V~YLg)-l_~~)L~;)-I)W, =e- rr
, L L (v~~)LW-I_~YL~;)-I)wy.

{J= 1,'= I fJ= I }'= 1

Following Suo (1990), we introduce the matrix B,p and H,p

(B5)

(B6)

2

B~;) = i L v~;IL~;)-1 (m = 1,2),
,'= I

(B7)

and rewrite eqn (B6) as

2 2

L R,pWp = e2rr
, L H,pwp.

p~ I p~ I

(B8)

From the eigenvalue equation (B8), we thus select WI = -1/2i, W2 = 1/2JH, ,jH22 as proposed by Suo (1990)
and then rewrite eqn (B3a, b) as

(
H 22 )1/2 . Kr;'H rJ 22 +1rJ ,2 = ;;;;:::. ahead of the crack tip ligament.

II v' 2nr
(B9)

Due to oscillatory singularity in the presence of which K has length scale dependency we introduce the
concept of Rice (1988) such that in a reference length f
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Kr'" = K , +iK2•

Thus we obtain the stress intensity factors K, and K"

2161

(BIO)

(B11)

By use of asymptotic representation ofdisplacement U. and the relation between bkl and w. the displacement
jump behind the crack tip can be written as

(
H ll )'/2 . 2Hll Kr '/2+;"(21t)-1/2
-H .1.U2+ 11\U, = (I 2') h()'

22 + 1'1 cos 1t'1
(BI2)

where .1.U2 = u2(r,It)-u2(r, -It), .1.UI = uI(r,It)-uI(r, -It). Applying (B9) and (BI2) to Irwin's virtual crack
extension concept, the energy release rate related to the stress intensity factor can be obtained as

H ll IKI 2

G = G1+Gil = 4 h2 ( ).cos 1t'1
(BI3)

For the antiplane deformation we can define the stress intensity factor and the energy release rate for mode
III as

G I «(I) (2»K2
III = 4i VlI +V31 Ill'

(BI4)

(BI5)


